دانلود و نمایش مقالات مرتبط با architecture::صفحه 1
بلافاصله پس از پرداخت دانلود کنید
نتیجه جستجو - architecture

تعداد مقالات یافته شده: 548
ردیف عنوان نوع
1 Cryptocurrency forecasting with deep learning chaotic neural networks
پیش بینی cryptocurrency با یادگیری عمیق شبکه های عصبی پر هرج و مرج-2019
We implement deep learning techniques to forecast the price of the three most widely traded digital currencies i.e., Bitcoin, Digital Cash and Ripple. To the best of our knowledge, this is the first work to make use of deep learning in cryptocurrency prediction. The results from testing the existence of non- linearity revealed that the time series of all digital currencies exhibit fractal dynamics, long memory and self-similarity. The predictability of long-short term memory neural network topologies (LSTM) is signif- icantly higher when compared to the generalized regression neural architecture, set forth as our bench- mark system. The latter failed to approximate global nonlinear hidden patterns regardless of the degree of contamination with noise, as they are based on Gaussian kernels suitable only for local approximation of non-stationary signals. Although the computational burden of the LSTM model is higher as opposed to brute force in nonlinear pattern recognition, eventually deep learning was found to be highly efficient in forecasting the inherent chaotic dynamics of cryptocurrency markets.
Keywords: Digital currencies | Deep learning | Fractality | Neural networks | Chaos | Forecasting
مقاله انگلیسی
2 Temporal and spatial deep learning network for infrared thermal defect detection
شبکه یادگیری عمیق زمانی و مکانی برای تشخیص نقص حرارتی مادون قرمز-2019
Most common types of defects for composite are debond and delamination. It is difficult to detect the inner defects on a complex shaped specimen by using conventional optical thermography nondestructive testing (NDT) methods. In this paper, a hybrid of spatial and temporal deep learning architecture for automatic thermography defects detection is proposed. The integration of cross network learning strategy has the capability to significantly minimize the uneven illumination and enhance the detection rate. The probability of detection (POD) has been derived to measure the detection results and this is coupled with comparison studies to verify the efficacy of the proposed method. The results show that visual geometry group-Unet (VGG-Unet) cross learning structure can significantly improve the contrast between the defective and non-defective regions. In addition, investigation of different feature extraction methods in which embedded in deep learning is conducted to optimize the learning structure. To investigate the efficacy and robustness of the proposed method, experimental studies have been carried out for inner debond defects on both regular and irregular shaped carbon fiber reinforced polymer (CFRP) specimens.
Keywords: Deep learning | Segmentation | Thermography defect detection | Nondestructive testing
مقاله انگلیسی
3 DeepPF: A deep learning based architecture for metro passenger flow prediction
DeepPF: معماری مبتنی بر یادگیری عمیق برای پیش بینی جریان مسافر مترو-2019
This study aims to combine the modeling skills of deep learning and the domain knowledge in transportation into prediction of metro passenger flow. We present an end-to-end deep learning architecture, termed as Deep Passenger Flow (DeepPF), to forecast the metro inbound/outbound passenger flow. The architecture of the model is highly flexible and extendable; thus, enabling the integration and modeling of external environmental factors, temporal dependencies, spatial characteristics, and metro operational properties in short-term metro passenger flow prediction. Furthermore, the proposed framework achieves a high prediction accuracy due to the ease of integrating multi-source data. Numerical experiments demonstrate that the proposed DeepPF model can be extended to general conditions to fit the diverse constraints that exist in the transportation domain.
Keywords: Passenger flow prediction | Deep learning architecture | Domain knowledge
مقاله انگلیسی
4 Integrated deep learning and stochastic car-following model for traffic dynamics on multi-lane freeways
یادگیری عمیق یکپارچه و مدل تعقیب خودرو تصادفی برای پویایی ترافیک در بزرگراه های چند خطه-2019
The current paper proposes a novel stochastic procedure for modelling car-following behaviours on a multi-lane motorway. We develop an integrated multi-lane stochastic continuous car-following model where a deep learning architecture is used to estimate a probability of lanechanging (LC) manoeuvres. To the best of our knowledge, this work is among the very few papers which exploit deep learning to model driving behaviour on a multi-lane road. The objective of this study is to establish a coupled stochastic continuous multi-lane car-following model using Langevin equations to cope with probabilistic characteristics of LC manoeuvres. In particular, a stochastic volatility, derived from LC manoeuvres is introduced in a multi-lane stochastic optimal velocity model (SOVM). In additions, Convolutional Neural Network (CNN) is applied to estimate a probability of LC manoeuvres in the integrated multi-lane car-following model. Furthermore, imaged second-based trajectories of the lane-changer and surrounding vehicles are used to identify whether LC manoeuvres occur by using the CNN. Finally, the proposed method is validated using a real-world high-resolution vehicle trajectory dataset. The results indicate that the prediction of the integrated SOVM is almost identical to the observed trajectories of the lanechangers and the following vehicles in the initial and the target lane. It has been found that the proposed multi-lane SOVM can tackle the unpredictable fluctuations in the velocity of the vehicles in the acceleration/deceleration zone.
Keywords: Stochastic car-following model | Deep learning | Lane-changing behaviour
مقاله انگلیسی
5 Internet of Things: A survey on machine learning-based intrusion detection approaches
اینترنت اشیاء: مرور روش های تشخیص نفوذ مبتنی بر یادگیری ماشین-2019
In the world scenario, concerns with security and privacy regarding computer networks are always in- creasing. Computer security has become a necessity due to the proliferation of information technologies in everyday life. The increase in the number of Internet accesses and the emergence of new technologies, such as the Internet of Things (IoT paradigm, are accompanied by new and modern attempts to invade computer systems and networks. Companies are increasingly investing in studies to optimize the detec- tion of these attacks. Institutions are selecting intelligent techniques to test and verify by comparing the best rates of accuracy. This research, therefore, focuses on rigorous state-of-the-art literature on Machine Learning Techniques applied in Internet-of-Things and Intrusion Detection for computer network security. The work aims, therefore, recent and in-depth research of relevant works that deal with several intelli- gent techniques and their applied intrusion detection architectures in computer networks with emphasis on the Internet of Things and machine learning. More than 95 works on the subject were surveyed, span- ning across different themes related to security issues in IoT environments.
Keywords: Security networks | Machine learning | Internet-of-Things | Survey | Intelligent techniques | Machine learning
مقاله انگلیسی
6 Development of accurate human head models for personalized electromagnetic dosimetry using deep learning
توسعه مدل های دقیق سر انسان برای دوزیمتری الکترومغناطیسی شخصی با استفاده از یادگیری عمیق-2019
The development of personalized human head models from medical images has become an important topic in the electromagnetic dosimetry field, including the optimization of electrostimulation, safety assessments, etc. Human head models are commonly generated via the segmentation of magnetic resonance images into different anatomical tissues. This process is time consuming and requires special experience for segmenting a relatively large number of tissues. Thus, it is challenging to accurately compute the electric field in different specific brain regions. Recently, deep learning has been applied for the segmentation of the human brain. However, most studies have focused on the segmentation of brain tissue only and little attention has been paid to other tissues, which are considerably important for electromagnetic dosimetry. In this study, we propose a new architecture for a convolutional neural network, named ForkNet, to perform the segmentation of whole human head structures, which is essential for evaluating the electrical field distribution in the brain. The proposed network can be used to generate personalized head models and applied for the evaluation of the electric field in the brain during transcranial magnetic stimulation. Our computational results indicate that the head models generated using the proposed network exhibit strong matching with those created via manual segmentation in an intra-scanner segmentation task.
Keywords: convolutional neural network | Deep learning | Image segmentation | Transcranial magnetic stimulation
مقاله انگلیسی
7 مروری بر تجمیع دستگاه های مدل سازی اطلاعات ساختمانی (BIM) و اینترنت اشیاء (IoT): وضعیت کنونی و روند آینده
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 13 - تعداد صفحات فایل doc فارسی: 56
تجمیع مدل سازی اطلاعات ساختمانی (BIM) با داده های زمان واقعی(بلادرنگ) دستگاه های اینترنت اشیاء (IoT)، نمونه قوی را برای بهبود ساخت وساز و بهره وری عملیاتی ارائه می دهد. اتصال جریان-های داده های زمان واقعی که بر گرفته از مجموعه هایی از شبکه های حسگرِ اینترنت اشیاء (که این جریان های داده ای، به سرعت در حال گسترش هستند) می باشند، با مدل های باکیفیت BIM، در کاربردهای متعددی قابل استفاده می باشد. با این حال، پژوهش در زمینه ی تجمیع BIM و IOT هنوز در مراحل اولیه ی خود قرار دارد و نیاز است تا وضعیت فعلی تجمیع دستگاه های BIM و IoT درک شود. این مقاله با هدف شناسایی زمینه های کاربردی نوظهور و شناسایی الگوهای طراحی رایج در رویکردی که مخالف با تجمیع دستگاه BIM-IoT می باشد، مرور جامعی در این زمینه انجام می دهد و به بررسی محدودیت های حاضر و پیش بینی مسیرهای تحقیقاتی آینده می پردازد. در این مقاله، در مجموع، 97 مقاله از 14 مجله مربوط به AEC و پایگاه داده های موجود در صنایع دیگر (در دهه گذشته)، مورد بررسی قرار گرفتند. چندین حوزه ی رایج در این زمینه تحت عناوین عملیات ساخت-وساز و نظارت، مدیریت ایمنی و بهداشت، لجستیک و مدیریت ساختمان، و مدیریت تسهیلات شناسایی شدند. نویسندگان، 5 روش تجمیع را همراه با ذکر توضیحات، نمونه ها و بحث های مربوط به آنها به طور خلاصه بیان کرده اند. این روش های تجمیع از ابزارهایی همچون واسط های برنامه نویسی BIM، پایگاه داده های رابطه ای، تبدیل داده های BIM به پایگاه داده های رابطه ای با استفاده از طرح داده های جدید، ایجاد زبان پرس وجوی جدید، فناوری های وب معنایی و رویکردهای ترکیبی، استفاده می کنند. براساس محدودیت های مشاهده شده، با تمرکز بر الگوهای معماری سرویس گرا (SOA) و راهبردهای مبتنی بر وب برای ادغام BIM و IoT، ایجاد استانداردهایی برای تجمیع و مدیریت اطلاعات، حل مسئله همکاری و محاسبات ابری، مسیرهای برجسته ای برای تحقیقات آینده پیشنهاد شده است.
کلمه های کلیدی: مدل سازی اطلاعات ساختمانی (BIM) | دستگاه اینترنت اشیاء (IoT) | حسگرها | ساختمان هوشمند | شهر هوشمند | محیط ساخته شده هوشمند | تجمیع.
مقاله ترجمه شده
8 Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches
ایجاد پیوندهای محلی سازی ساختار و خاصیت برای تغییر شکل الاستیک کامپوزیت های کنتراست بالا سه بعدی با استفاده از روشهای یادگیری عمیق-2019
Data-driven methods are attracting growing attention in the field of materials science. In particular, it is now becoming clear that machine learning approaches offer a unique avenue for successfully mining practically useful process-structure-property (PSP) linkages from a variety of materials data. Most previous efforts in this direction have relied on feature design (i.e., the identification of the salient features of the material microstructure to be included in the PSP linkages). However due to the rich complexity of features in most heterogeneous materials systems, it has been difficult to identify a set of consistent features that are transferable from one material system to another. With flexible architecture and remarkable learning capability, the emergent deep learning approaches offer a new path forward that circumvents the feature design step. In this work, we demonstrate the implementation of a deep learning feature-engineering-free approach to the prediction of the microscale elastic strain field in a given threedimensional voxel-based microstructure of a high-contrast two-phase composite. The results show that deep learning approaches can implicitly learn salient information about local neighborhood details, and significantly outperform state-of-the-art methods.
Keywords: Materials informatics | Convolutional neural networks | Deep learning | Localization | Structure-property linkages
مقاله انگلیسی
9 A Survey and Taxonomy of FPGA-based Deep Learning Accelerators
مرور و طبقه بندی شتاب دهنده های یادگیری عمیق مبتنی بر FPGA-2019
Deep learning, the fastest growing segment of Artificial Neural Network (ANN), has led to the emergence of many machine learning applications and their implementation across multiple platforms such as CPUs, GPUs and recon- figurable hardware ( Field-Programmable Gate Arrays or FPGAs). However, inspired by the structure and function of ANNs, large-scale deep learning topologies require a considerable amount of parallel processing, memory re- sources, high throughput and significant processing power. Consequently, in the context of real time hardware systems, it is crucial to find the right trade-offbetween performance, energy efficiency, fast development, and cost. Although limited in size and resources, several approaches have showed that FPGAs provide a good starting point for the development of future deep learning implementation architectures. Through this paper, we briefly review recent work related to the implementation of deep learning algorithms in FPGAs. We will analyze and compare the design requirements and features of existing topologies to finally propose development strategies and implementation architectures for better use of FPGA-based deep learning topologies. In this context, we will examine the frameworks used in these studies, which will allow testing a lot of topologies to finally arrive at the best implementation alternatives in terms of performance and energy efficiency.
Keywords: Deep learning | Framework | Optimized implementation | FPGA
مقاله انگلیسی
10 A survey of techniques for optimizing deep learning on GPUs
مروری بر تکنیک های بهینه سازی یادگیری عمیق در GPU-2019
The rise of deep-learning (DL) has been fuelled by the improvements in accelerators. Due to its unique features, the GPU continues to remain the most widely used accelerator for DL applications. In this paper, we present a survey of architecture and system-level techniques for optimizing DL applications on GPUs. We review techniques for both inference and training and for both single GPU and distributed system with multiple GPUs. We bring out the similarities and differences of different works and highlight their key attributes. This survey will be useful for both novice and experts in the field of machine learning, processor architecture and high-performance computing
Keywords: Review | GPU | Hardware architecture for deep learning | Accelerator | Distributed training | Parameter | server Allreduce | Pruning | Tiling
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی