دانلود و نمایش مقالات مرتبط با database::صفحه 1
اربعین
نتیجه جستجو - database

تعداد مقالات یافته شده: 549
ردیف عنوان نوع
1 Data Mining Strategies for Real-Time Control in New York City
استراتژی داده کاوی برای کنترل زمان واقعی در شهر نیویورک-2105
The Data Mining System (DMS) at New York City Department of Transportation (NYCDOT) mainly consists of four database systems for traffic and pedestrian/bicycle volumes, crash data, and signal timing plans as well as the Midtown in Motion (MIM) systems which are used as part of the NYCDOT Intelligent Transportation System (ITS) infrastructure. These database and control systems are operated by different units at NYCDOT as an independent database or operation system. New York City experiences heavy traffic volumes, pedestrians and cyclists in each Central Business District (CBD) area and along key arterial systems. There are consistent and urgent needs in New York City for real-time control to improve mobility and safety for all users of the street networks, and to provide a timely response and management of random incidents. Therefore, it is necessary to develop an integrated DMS for effective real-time control and active transportation management (ATM) in New York City. This paper will present new strategies for New York City suggesting the development of efficient and cost-effective DMS, involving: 1) use of new technology applications such as tablets and smartphone with Global Positioning System (GPS) and wireless communication features for data collection and reduction; 2) interface development among existing database and control systems; and 3) integrated DMS deployment with macroscopic and mesoscopic simulation models in Manhattan. This study paper also suggests a complete data mining process for real-time control with traditional static data, current real timing data from loop detectors, microwave sensors, and video cameras, and new real-time data using the GPS data. GPS data, including using taxi and bus GPS information, and smartphone applications can be obtained in all weather conditions and during anytime of the day. GPS data and smartphone application in NYCDOT DMS is discussed herein as a new concept. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of Elhadi M. Shakshu Keywords: Data Mining System (DMS), New York City, real-time control, active transportation management (ATM), GPS data
مقاله انگلیسی
2 Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel
یادگیری ماشین با هدایت متالورژی فیزیکی و طراحی هوشمند مصنوعی از فولاد ضد زنگ قوی-2019
With the development of the materials genome philosophy and data mining methodologies, machine learning (ML) has been widely applied for discovering new materials in various systems including highend steels with improved performance. Although recently, some attempts have been made to incorporate physical features in the ML process, its effects have not been demonstrated and systematically analysed nor experimentally validated with prototype alloys. To address this issue, a physical metallurgy (PM) -guided ML model was developed, wherein intermediate parameters were generated based on original inputs and PM principles, e.g., equilibrium volume fraction (Vf) and driving force (Df) for precipitation, and these were added to the original dataset vectors as extra dimensions to participate in and guide the ML process. As a result, the ML process becomes more robust when dealing with small datasets by improving the data quality and enriching data information. Therefore, a new material design method is proposed combining PM-guided ML regression, ML classifier and a genetic algorithm (GA). The model was successfully applied to the design of advanced ultrahigh-strength stainless steels using only a small database extracted from the literature. The proposed prototype alloy with a leaner chemistry but better mechanical properties has been produced experimentally and an excellent agreement was obtained for the predicted optimal parameter settings and the final properties. In addition, the present work also clearly demonstrated that implementation of PM parameters can improve the design accuracy and efficiency by eliminating intermediate solutions not obeying PM principles in the ML process. Furthermore, various important factors influencing the generalizability of the ML model are discussed in detail.
Keywords: Alloy design | Machine learning | Physical metallurgy | Small sample problem | Stainless steel
مقاله انگلیسی
3 Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma
یادگیری ماشین برای پیش بینی متاستاز گره غشایی در کارسینوم سلول سنگفرشی اولیه دهان-2019
Objectives: To develop and validate an algorithm to predict occult nodal metastasis in clinically node negative oral cavity squamous cell carcinoma (OCSCC) using machine learning. To compare algorithm performance to a model based on tumor depth of invasion (DOI). Materials and methods: Patients who underwent primary tumor extirpation and elective neck dissection from 2007 to 2013 for clinical T1-2N0 OCSCC were identified from the National Cancer Database (NCDB). Multiple machine learning algorithms were developed to predict pathologic nodal metastasis using clinicopathologic data from 782 patients. The algorithm was internally validated using test data from 654 patients in NCDB and was then externally validated using data from 71 patients treated at a single academic institution. Performance was measured using area under the receiver operating characteristic (ROC) curve (AUC). Machine learning and DOI model performance were compared using Delong’s test for two correlated ROC curves. Results: The best classification performance was achieved with a decision forest algorithm (AUC=0.840). When applied to the single-institution data, the predictive performance of machine learning exceeded that of the DOI model (AUC=0.657, p=0.007). Compared to the DOI model, machine learning reduced the number of neck dissections recommended while simultaneously improving sensitivity and specificity. Conclusion: Machine learning improves prediction of pathologic nodal metastasis in patients with clinical T1- 2N0 OCSCC compared to methods based on DOI. Improved predictive algorithms are needed to ensure that patients with occult nodal disease are adequately treated while avoiding the cost and morbidity of neck dissection in patients without pathologic nodal disease.
Keywords: Oral cancer | Squamous cell carcinoma | Machine learning | Artificial intelligence
مقاله انگلیسی
4 مروری بر تجمیع دستگاه های مدل سازی اطلاعات ساختمانی (BIM) و اینترنت اشیاء (IoT): وضعیت کنونی و روند آینده
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 13 - تعداد صفحات فایل doc فارسی: 56
تجمیع مدل سازی اطلاعات ساختمانی (BIM) با داده های زمان واقعی(بلادرنگ) دستگاه های اینترنت اشیاء (IoT)، نمونه قوی را برای بهبود ساخت وساز و بهره وری عملیاتی ارائه می دهد. اتصال جریان-های داده های زمان واقعی که بر گرفته از مجموعه هایی از شبکه های حسگرِ اینترنت اشیاء (که این جریان های داده ای، به سرعت در حال گسترش هستند) می باشند، با مدل های باکیفیت BIM، در کاربردهای متعددی قابل استفاده می باشد. با این حال، پژوهش در زمینه ی تجمیع BIM و IOT هنوز در مراحل اولیه ی خود قرار دارد و نیاز است تا وضعیت فعلی تجمیع دستگاه های BIM و IoT درک شود. این مقاله با هدف شناسایی زمینه های کاربردی نوظهور و شناسایی الگوهای طراحی رایج در رویکردی که مخالف با تجمیع دستگاه BIM-IoT می باشد، مرور جامعی در این زمینه انجام می دهد و به بررسی محدودیت های حاضر و پیش بینی مسیرهای تحقیقاتی آینده می پردازد. در این مقاله، در مجموع، 97 مقاله از 14 مجله مربوط به AEC و پایگاه داده های موجود در صنایع دیگر (در دهه گذشته)، مورد بررسی قرار گرفتند. چندین حوزه ی رایج در این زمینه تحت عناوین عملیات ساخت-وساز و نظارت، مدیریت ایمنی و بهداشت، لجستیک و مدیریت ساختمان، و مدیریت تسهیلات شناسایی شدند. نویسندگان، 5 روش تجمیع را همراه با ذکر توضیحات، نمونه ها و بحث های مربوط به آنها به طور خلاصه بیان کرده اند. این روش های تجمیع از ابزارهایی همچون واسط های برنامه نویسی BIM، پایگاه داده های رابطه ای، تبدیل داده های BIM به پایگاه داده های رابطه ای با استفاده از طرح داده های جدید، ایجاد زبان پرس وجوی جدید، فناوری های وب معنایی و رویکردهای ترکیبی، استفاده می کنند. براساس محدودیت های مشاهده شده، با تمرکز بر الگوهای معماری سرویس گرا (SOA) و راهبردهای مبتنی بر وب برای ادغام BIM و IoT، ایجاد استانداردهایی برای تجمیع و مدیریت اطلاعات، حل مسئله همکاری و محاسبات ابری، مسیرهای برجسته ای برای تحقیقات آینده پیشنهاد شده است.
کلمه های کلیدی: مدل سازی اطلاعات ساختمانی (BIM) | دستگاه اینترنت اشیاء (IoT) | حسگرها | ساختمان هوشمند | شهر هوشمند | محیط ساخته شده هوشمند | تجمیع.
مقاله ترجمه شده
5 Machine Learning Prediction Models for In-Hospital Mortality After Transcatheter Aortic Valve Replacement
یادگیری ماشین مدل های پیش بینی شده برای مرگ در بیمارستان پس از جایگزینی ترانس دریچه آئورت-2019
OBJECTIVES This study sought to develop and compare an array of machine learning methods to predict in-hospital mortality after transcatheter aortic valve replacement (TAVR) in the United States. BACKGROUND Existing risk prediction tools for in-hospital complications in patients undergoing TAVR have been designed using statistical modeling approaches and have certain limitations. METHODS Patient data were obtained from the National Inpatient Sample database from 2012 to 2015. The data were randomly divided into a development cohort (n ¼ 7,615) and a validation cohort (n ¼ 3,268). Logistic regression, artificial neural network, naive Bayes, and random forest machine learning algorithms were applied to obtain in-hospital mortality prediction models. RESULTS A total of 10,883 TAVRs were analyzed in our study. The overall in-hospital mortality was 3.6%. Overall, prediction models’ performance measured by area under the curve were good (>0.80). The best model was obtained by logistic regression (area under the curve: 0.92; 95% confidence interval: 0.89 to 0.95). Most obtained models plateaued after introducing 10 variables. Acute kidney injury was the main predictor of in-hospital mortality ranked with the highest mean importance in all the models. The National Inpatient Sample TAVR score showed the best discrimination among available TAVR prediction scores. CONCLUSIONS Machine learning methods can generate robust models to predict in-hospital mortality for TAVR. The National Inpatient Sample TAVR score should be considered for prognosis and shared decision making in TAVR patients. (J Am Coll Cardiol Intv 2019;12:1328–38) © 2019 by the American College of Cardiology Foundation.
مقاله انگلیسی
6 Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network
همجوشی امتیاز موازی ECG و اثر انگشت را برای احراز هویت انسان بر اساس شبکه های عصبی کانولوشن-2019
Biometrics have been extensively used in the past decades in various security systems and have been deployed around the world. However, all unimodal biometrics have their own limitations and disadvantages (e.g., fingerprint suffers from spoof attacks). Most of these limitations can be addressed by designing a multimodal biometric system, which deploys over one biometric modality to improve the performance and make the system robust to spoof attacks. In this paper, we proposed a secure multimodal biometric system by fusing electrocardiogram (ECG) and fingerprint based on convolution neural network (CNN). To the best of our knowledge, this is the first study to fuse ECG and fingerprint using CNN for human authentication. The feature extraction for individual modalities are performed using CNN and then biometric templates are generated from these features. After that, we have applied one of the cancelable biometric techniques to protect these templates. In the authentication stage, we proposed a Q-Gaussian multi support vector machine (QG-MSVM) as a classifier to improve the authentication performance. Dataset augmentation is successfully used to increase the authentication performance of the proposed system. Our system is tested on two databases, the PTB database from PhysioNet bank for ECG and LivDet2015 database for the fingerprint. Experimental results show that the proposed multimodal system is efficient, robust and reliable than existing multimodal authentication algorithms. According to the advantages of the proposed system, it can be deployed in real applications
Keywords: Authentication | CNN | ECG | Fingerprint | Multimodal biometrics | MSVM
مقاله انگلیسی
7 Discovering unusual structures from exception using big data and machine learning techniques
کشف ساختارهای غیر معمول از استثناء با استفاده از داده های بزرگ و تکنیک های یادگیری ماشین-2019
Recently, machine learning (ML) has become a widely used technique in materials science study. Most work focuses on predicting the rule and overall trend by building a machine learning model. However, new insights are often learnt from exceptions against the overall trend. In this work, we demonstrate that how unusual structures are discovered from exceptions when machine learning is used to get the relationship between atomic and electronic structures based on big data from high-throughput calculation database. For example, after training an ML model for the relationship between atomic and electronic structures of crystals, we find AgO2F, an unusual structure with both Ag3+ and O2 2 , from structures whose band gap deviates much from the prediction made by our model. A further investigation on this structure might shed light into the research on anionic redox in transition metal oxides of Li-ion batterie.
Keywords: Machine learning | Gradient boosting decision tree | Band gap | Unusual structures
مقاله انگلیسی
8 Assessing environmental performance in early building design stage: An integrated parametric design and machine learning method
ارزیابی عملکرد محیطی در مرحله طراحی اولیه ساختمان: یکپارچه طراحی پارامتری و یک روش یادگیری ماشین-2019
Decisions made at early design stage have major impacts on buildings’ life-cycle environmental performance. However, when only a few parameters are determined in early design stages, the detailed design decisions may still vary significantly. This may cause same early design to have quite different environmental impacts. Moreover, default settings for unknown detailed design parameters clearly cannot cover all possible variations in impact, and Monte Carlo analysis is sometimes not applicable as parameters’ probability distributions are usually unknown. Thus, uncertainties about detailed design make it difficult for existing environmental assessment methods to support early design decisions. Thus, this study developed a quantitative method using parametric design technology and machine learning algorithms for assessing buildings’ environmental performance in early decision stages, considering uncertainty associated with detailed design decisions. The parametric design technology creates design scenarios dataset, then associated environmental performances are assessed using environmental assessment databases and building performance simulations. Based on the generated samples, a machine learning algorithm integrating fuzzy C-means clustering and extreme learning machine extracts the case-specific knowledge regarding designed buildings’ early design associated with environmental uncertainty. Proposed method is an alternative but more generally applicable method to previous approaches to assess buildings environmental uncertainty in early design stages.
Keywords: Building early design | Parametric design | Machine learning | Environmental impact | Prediction intervals
مقاله انگلیسی
9 Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations
کشف جهانی پروسکوتیتهای آلی غیر آلی ترکیبی پایدار و غیر سمی برای سیستم های فتوولتائیک با ترکیب روش یادگیری ماشین با محاسبات اصلی-2019
Traditional trial-and-error methods seriously restrict and hinder the searching of high-performance functional materials, especially when the search space is large. Rapid searching for advanced functional materials has always been a hot research topic, and attracted a lot of experimental and theoretical research attention. Here, by combining machine learning method with density functional theory (DFT) calculations, a target-driven method is proposed here to speed up the discovery of hidden hybrid organic-inorganic perovskites (HOIPs) for photovoltaic applications from 230808 HOIPs candidates which is almost two orders larger than previous studied. After imposing two criterions, i.e., charge neutrality condition and stability condition, on potential HOIPs candidates, followed by a machine learning (ML) screening, 686 orthorhombic-like HOIPs with proper bandgap are selected. In machine learning screening, ensemble learning using three ML models, including gradient boosting regression (GBR), supporting vector regression (SVR) and kernel ridge regression (KRR), are applied to predict the bandgap of 38086 HOIPs candidates. 132 stable and non-toxic (Cd-, Pb- and Hg-free) orthorhombiclike HOIPs are finally verified by DFT calculations with appropriate band gap for solar cells. In the present study, not only a series of unexplored stable and non-toxic HOIPs are discovered for further experimental synthesis, a new HOIPs database is constructed as well, thus beneficial to future functional material design.
Keywords: Machine learning | Hybrid organic-inorganic perovskites | First principle calculations | Photovoltaics
مقاله انگلیسی
10 استفاده از رسانه های اجتماعی برای شناسایی جذابیت گردشگری در شش شهر ایتالیا
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 7 - تعداد صفحات فایل doc فارسی: 18
تکامل فناوری و گسترش شبکه های اجتماعی به افراد اجازه داده است که مقادیر زیادی داده را در هر روز تولید کنند. شبکه های اجتماعی کاربرانی را فارهم می کند که به اطلاعات دسترسی دارند. هدف این مقاله تعیین جذابیت های شهرهای مختلف گردشگری ازطریق بررسی رفتار کاربران در شبکه های اجتماعی می باشد. پایگاه داده ای شامل عکس های جغرافیایی واقع شده در شش شهر می باشد که به عنوان یک مرکز فرهنگی و هنری در ایتالیا عمل می کنند. عکس ها از فلیکر که یک بستر به اشتراک گذاری داده می باشد دانلود شدند. تحلیل داده ها با استفاده از دیدگاه مدلهای یادگیری ریاضی و ماشینی انجام شد. نتایج مطالعه ما نشانگر نقشه های شناسایی رفتار کاربران، گرایش سالانه به فعالیت تصویری در شهرها و تاکید بر سودمند بودن روش پیشنهادی می باشد که قادر به تامین اطلاعات مکانی و کاربری است. این مطالعه تاکید می کند که چگونه تحلیل داده های اجتماعی می تواند یک مدل پیشگویانه برای فرموله کردن طرح های گردشگری خلق کند. در انتها، راهبردهای عمومی بازاریابی گردشگری مورد بحث قرار می گیرند.
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی