دانلود و نمایش مقالات مرتبط با اندازه گیری::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2

با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت (6037997535328901 بانک ملی ناصر خنجری ) مقاله خود را دریافت کنید (تا مشکل رفع گردد). 

نتیجه جستجو - اندازه گیری

تعداد مقالات یافته شده: 543
ردیف عنوان نوع
1 Moving towards intelligent telemedicine: Computer vision measurement of human movement
حرکت به سمت پزشکی از راه دور هوشمند: اندازه گیری بینایی کامپیوتری حرکت انسان-2022
Background: Telemedicine video consultations are rapidly increasing globally, accelerated by the COVID- 19 pandemic. This presents opportunities to use computer vision technologies to augment clinician visual judgement because video cameras are so ubiquitous in personal devices and new techniques, such as DeepLabCut (DLC) can precisely measure human movement from smartphone videos. However, the accuracy of DLC to track human movements in videos obtained from laptop cameras, which have a much lower FPS, has never been investigated; this is a critical gap because patients use laptops for most telemedicine consultations. Objectives: To determine the validity and reliability of DLC applied to laptop videos to measure finger tapping, a validated test of human movement. Method: Sixteen adults completed finger-tapping tests at 0.5 Hz, 1 Hz, 2 Hz, 3 Hz and at maximal speed. Hand movements were recorded simultaneously by a laptop camera at 30 frames per second (FPS) and by Optotrak, a 3D motion analysis system at 250 FPS. Eight DLC neural network architectures (ResNet50, ResNet101, ResNet152, MobileNetV1, MobileNetV2, EfficientNetB0, EfficientNetB3, EfficientNetB6) were applied to the laptop video and extracted movement features were compared to the ground truth Optotrak motion tracking. Results: Over 96% (529/552) of DLC measures were within +∕−0.5 Hz of the Optotrak measures. At tapping frequencies >4 Hz, there was progressive decline in accuracy, attributed to motion blur associated with the laptop camera’s low FPS. Computer vision methods hold potential for moving us towards intelligent telemedicine by providing human movement analysis during consultations. However, further developments are required to accurately measure the fastest movements.
keywords: پزشکی از راه دور | ضربه زدن با انگشت | موتور کنترل | کامپیوتری | Telemedicine | DeepLabCut | Finger tapping | Motor control | Computer vision
مقاله انگلیسی
2 The physical and mechanical properties for flexible biomass particles using computer vision
خواص فیزیکی و مکانیکی ذرات زیست توده انعطاف پذیر با استفاده از بینایی کامپیوتری-2022
The combustion and fluidization behavior of biomass depend on the physical properties (size, morphology, and density) and mechanical performances (elastic modulus, Poisson’s ratio, tensile strength and failure strain), but their quantitative models have rarely been focused in previous researchers. Hence, a static image measurement for particle physical properties is studied. Combining the uniaxial tension and digital image correlation tech- nology, the dynamic image measurement method for the mechanical properties is proposed. The results indicate that the average roundness, rectangularity, and sphericity of present biomass particles are 0.2, 0.4, and 0.16, respectively. The equivalent diameter and density obey the skewed normal distribution. The tensile strength and failure stress are sensitive to stretching rate, fiber size and orientation. The distribution intervals of elastic modulus and Poisson’s ratio are 30–600 MPa and 0.25–0.307, respectively. The stress–strain curves obtained from imaging experiments agree well with the result of finite element method. This study provides the operating parameters for the numerical simulation of particles in the fluidized bed and combustor. Furthermore, the computer vision measurement method can be extended to the investigations of fossil fuels.
keywords: ذرات زیست توده | مشخصات فیزیکی | اجرای مکانیکی | تست کشش | آزمایش تصویربرداری | بینایی کامپیوتر | Biomass particle | Physical properties | Mechanical performances | Tensile testing | Imaging experiment | Computer vision
مقاله انگلیسی
3 Understanding the effect of surfactants on two-phase flow using computer vision
درک اثر سورفکتانت ها بر جریان دو فازی با استفاده از بینایی کامپیوتر-2022
The effect of surfactants on vertical gas-liquid flow is experimentally investigated in a 12.7 mm diameter tube at conditions relevant to an ammonia-water bubble absorber. The characteristics of two-phase flow are studied using an air-water mixture, both with and without the addition of 1-octanol as the surfac- tant. High-speed videography is used to study the flow patterns and quantify interfacial areas and bubble velocities. Novel computer vision-based methods are used to analyze and quantify these flow parame- ters. The addition of 1-octanol results in enhancement in interfacial area due to the prevention of bubble coalescence leading to many small diameter bubbles. Measured values of interfacial area are compared with predictions from correlations in the literature, and agreement and differences are interpreted and discussed. The bubble velocity is measured by object tracking using the optical flow method. Surfactants lead to a decrease in bubble velocity and increase in the residence time. These are surmised to be due to the shear stresses caused by the non-uniform concentration distribution of surfactant along the bub- ble surface. Overall, the addition of surfactants can lead to appreciable enhancement in heat and mass transfer rates due to their effect on interfacial areas and residence times.
keywords: سورفکتانت ها | جریان دو فازی | ناحیه رابط | سرعت | تقویت | تجسم جریان | Surfactants | Two-phase flow | Interfacial area | Velocity | Enhancement | Flow visualization
مقاله انگلیسی
4 Head tremor in cervical dystonia: Quantifying severity with computer vision
لرزش سر در دیستونی دهانه رحم: کمی کردن شدت با دید کامپیوتری-2022
Background: Head tremor (HT) is a common feature of cervical dystonia (CD), usually quantified by subjective observation. Technological developments offer alternatives for measuring HT severity that are objective and amenable to automation. Objectives: Our objectives were to develop CMOR (Computational Motor Objective Rater; a computer vision- based software system) to quantify oscillatory and directional aspects of HT from video recordings during a clinical examination and to test its convergent validity with clinical rating scales. Methods: For 93 participants with isolated CD and HT enrolled by the Dystonia Coalition, we analyzed video recordings from an examination segment in which participants were instructed to let their head drift to its most comfortable dystonic position. We evaluated peak power, frequency, and directional dominance, and used Spearman’s correlation to measure the agreement between CMOR and clinical ratings. Results: Power averaged 0.90 (SD 1.80) deg2/Hz, and peak frequency 1.95 (SD 0.94) Hz. The dominant HT axis was pitch (antero/retrocollis) for 50%, roll (laterocollis) for 6%, and yaw (torticollis) for 44% of participants. One-sided t-tests showed substantial contributions from the secondary (t = 18.17, p < 0.0001) and tertiary (t = 12.89, p < 0.0001) HT axes. CMOR’s HT severity measure positively correlated with the HT item on the Toronto Western Spasmodic Torticollis Rating Scale-2 (Spearman’s rho = 0.54, p < 0.001). Conclusions: We demonstrate a new objective method to measure HT severity that requires only conventional video recordings, quantifies the complexities of HT in CD, and exhibits convergent validity with clinical severity ratings.
keywords: لرزش سر | ویدیو | بینایی کامپیوتر | درجه بندی شدت | TWSTRS | Head tremor | Video | Computer vision | Severity rating | TWSTRS
مقاله انگلیسی
5 A novel method of fish tail fin removal for mass estimation using computer vision
یک روش جدید حذف باله دم ماهی برای تخمین جرم با استفاده از بینایی کامپیوتر-2022
Fish mass estimation is extremely important for farmers to get fish biomass information, which could be useful to optimize daily feeding and control stocking densities and ultimately determine optimal harvest time. However, fish tail fin mass does not contribute much to total body mass. Additionally, the tail fin of free-swimming fish is deformed or bent for most of the time, resulting in feature measurement errors and further affecting mass prediction accuracy by computer vision. To solve this problem, a novel non-supervised method for fish tail fin removal was proposed to further develop mass prediction models based on ventral geometrical features without tail fin. Firstly, fish tail fin was fully automatically removed using the Cartesian coordinate system and image processing. Secondly, the different features were respectively extracted from fish image with and without tail fin. Finally, the correlational relationship between fish mass and features was estimated by the Partial Least Square (PLS). In this paper, tail fins were completely automatically removed and mass estimation model based on area and area square has been the best tested on the test dataset with a high coefficient of determination (R2) of 0.991, the root mean square error (RMSE) of 7.10 g, the mean absolute error (MAE) of 5.36 g and the maximum relative error (MaxRE) of 8.46%. These findings indicated that mass prediction model without fish tail fin can more accurately estimate fish mass than the model with tail fin, which might be extended to estimate biomass of free- swimming fish underwater in aquaculture.
keywords: برداشتن باله دم | اتوماسیون | ماهی | تخمین انبوه | بینایی کامپیوتر | Tail fin removal | Automation | Fish | Mass estimation | Computer vision
مقاله انگلیسی
6 Prediction of total volatile basic nitrogen (TVB-N) and 2-thiobarbituric acid (TBA) of smoked chicken thighs using computer vision during storage at 4 °C
پیش‌بینی کل نیتروژن بازی فرار (TVB-N) و اسید ۲-تیوباربیتوریک (TBA) ران مرغ دودی با استفاده از بینایی رایانه در طول نگهداری در دمای ۴ درجه سانتی‌گراد-2022
As the traditional indicators of freshness measurement of meat products, TVB-N and TBA have the disadvantage of time-consuming, labor-intensive and destructive to the sample. The objective of this study was to investigate the possibility of computer vision techniques to visualize the variation of TVB-N and TBA during the storage of smoked chicken thighs. In this study, freshness indicators (TVB-N and TBA) and images of smoked chicken thighs were obtained simultaneously every 3 days during storage at 4 ◦C. Then, the RGB color space was converted to HSI and L*a*b* color spaces by color conversion algorithm, and the color parameters (RGB, HSI and L*a*b*) were correlated with TVB-N and TBA, respectively, for establishing multiple regression models. Finally, visu- alization maps of the spoilage were established by applying the multiple regression model to each pixel in the image. The results showed that the multiple linear regression models of TBA and TVB-N based on the color parameters L*, a*, I, S and R were well correlated (R 2 = 0.993 for TBA and R 2 = 0.970 for TVB-N). Distribution maps of TBA and TVB-N changed color gradually from blue to red during storage, respectively. In conclusion, this study demonstrated that distribution maps can be employed as a rapid, objective, and non-destructive method to predict the TBA and TVB-N values of smoked chicken thighs during storage.
keywords: ران مرغ دودی | بینایی کامپیوتر | خنکی | TVB-N | TBA | Smoked chicken thigh | Computer vision | Freshness
مقاله انگلیسی
7 Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data
ارزیابی شرایط زهکشی سطحی در مقیاس خیابان و محله: یک روش دید کامپیوتری و جهت جریان اعمال شده به داده های لیدار-2022
Surface drainage at the neighborhood and street scales plays an important role in conveying stormwater and mitigating urban flooding. Surface drainage at the local scale is often ignored due to the lack of up-to-date fine- scale topographical information. This paper addresses this issue by providing a novel method for evaluating surface drainage at the neighborhood and street scales based on mobile lidar (light detection and ranging) measurements. The developed method derives topographical properties and runoff accumulation by applying a semantic segmentation (SS) model (a computer vision technique) and a flow direction model (a hydrology technique) to lidar data. Fifty lidar images representing 50 street blocks were used to train, validate, and test the SS model. Based on the test dataset, the SS model has 80.3% IoU and 88.5% accuracy. The results suggest that the proposed method can effectively evaluate surface drainage conditions at both the neighborhood and street scales and identify problematic low points that could be susceptible to water ponding. Municipalities and property owners can use this information to take targeted corrective maintenance actions.
keywords: تقسیم بندی معنایی | جهت جریان | لیدار موبایل | زهکشی سطحی | زیرساخت های زهکشی | Semantic segmentation | Flow direction | Mobile lidar | Surface drainage | Drainage infrastructure
مقاله انگلیسی
8 Computer vision model for estimating the mass and volume of freshly harvested Thai apple ber ( Ziziphus mauritiana L:) and its variation with storage days
مدل بینایی کامپیوتری برای تخمین جرم و حجم سیب تازه برداشت شده تایلندی (Ziziphus mauritiana L:) و تغییرات آن با روزهای نگهداری-2022
The physical properties of fruits are proportional to their mass and volume; this connection is used to determine the fruit qualities and in designing the novel postharvest machinery. The present study aimed to forecast the mass and volume of Thai apple ber (Ziziphus mauritiana L.) as a function of its physical properties measured using image processing techniques at different stages of ripening (1st day, 4th day, 7th day, and 10th day). The mass and volume models developed and analyzed the single variable regression, multilinear regressions, and mass regression based on volume. Among these models, linear support vector machine (SVM) was found appropriate. The experimental data analysis showed that the R2 of the linear SVM model for mass and volume of the projected area were 0.955 and 0.965, respectively. In contrast, for the multilinear regression model, R2 values were 0.967 and 0.972, respectively. For the mass prediction model, the R2 was 0.970 based on calculated volume showing a linear relationship. Thus, it was concluded that real-time measurement of physical properties of Thai apple ber using an image-processing technique to estimate the mass and volume is a precise and accurate approach.
keywords: بینایی کامپیوتر | پردازش تصویر | فراگیری ماشین | پسرفت | ماشین بردار پشتیبانی | Computer vision | Image processing | Machine learning | Regression | Support vector machine
مقاله انگلیسی
9 Human perception of color differences using computer vision system measurements of raw pork loin
درک انسان از تفاوت‌های رنگی با استفاده از اندازه‌گیری‌های سیستم بینایی کامپیوتری گوشت خوک خام-2022
In the food industry, product color plays an important role in influencing consumer choices. Yet, there remains little research on the human ability to perceive differences in product color; therefore, preference testing is subjective rather than based on quantitative colors. Using a de-centralized computer-aided systematic discrim- ination testing method, we ascertain consumers’ ability to discern between systematically varied colors. As a case study, the colors represent the color variability of fresh pork as measured by a computer vision system. Our results indicate that a total color difference (ΔE) of approximately 1 is discriminable by consumers. Furthermore, we ascertain that a change in color along the b*-axis (yellowness) in CIELAB color space is most discernable, followed by the a*-axis (redness) and then the L*-axis (lightness). As developed, our web-based discrimination testing approach allows for large scale evaluation of human color perception, while these quantitative findings on meat color discrimination are of value for future research on consumer preferences of meat color and beyond.
keywords: تست تبعیض | تست مثلث | ترجیح رنگ | ظاهر غذا | رنگ گوشت | Discrimination testing | Triange test | Color preference | Food appearance | Meat color
مقاله انگلیسی
10 The application of computer vision systems in meat science and industry – A review
کاربرد سیستم های بینایی کامپیوتری در علم و صنعت گوشت – مروری-2022
Computer vision systems (CVS) are applied to macro- and microscopic digital photographs captured using digital cameras, ultrasound scanners, computer tomography, and wide-angle imaging cameras. Diverse image acquisi- tion devices make it technically feasible to obtain information about both the external features and internal structures of targeted objects. Attributes measured in CVS can be used to evaluate meat quality. CVS are also used in research related to assessing the composition of animal carcasses, which might help determine the impact of cross-breeding or rearing systems on the quality of meat. The results obtained by the CVS technique also contribute to assessing the impact of technological treatments on the quality of raw and cooked meat. CVS have many positive attributes including objectivity, non-invasiveness, speed, and low cost of analysis and systems are under constant development an improvement. The present review covers computer vision system techniques, stages of measurements, and possibilities for using these to assess carcass and meat quality.
keywords: سیستم بینایی کامپیوتری | گوشت | محصولات گوشتی | لاشه | Computer vision system | Meat | Meat products | Carcass
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 9473 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 9473 :::::::: افراد آنلاین: 72